Personal Blinkers
Calendar Gmail
Return

pubDate: Tue, 04 May 2021 15:16:28 GMT

post id: 609171dbea4ed608bda2e9fd

Изучая прогнозирование временных рядов, рано или поздно вы наткнетесь на чрезвычайно популярную модель Prophet, разработанную Facebook. Она приобрела свою большую популярность благодаря тому, что обеспечивает хорошие показатели с точки зрения точности, интерпретируемых результатов и, в то же время, автоматизирует многие элементы (например, подбор гиперпараметров или конструирование признаков) за пользователя. Вот почему ее относительно просто использовать как и опытным датасайентистам, так и энтузиастам с меньшим техническим багажом. Можете себе представить, насколько я был приятно удивлен, когда недавно наткнулся на новую библиотеку для прогнозирования временных рядов — NeuralProphet. Как вы можете понять из названия библиотеки, это по сути старая добрая Prophet только на стероидах, которыми в данном конкретном случае являются нейронные сети. Учитывая, что в настоящее время я довольно много работаю с временными рядами, я очень хотел проверить, какова она в сравнении с обычной Prophet. В этой статье я кратко расскажу вам, что такое NeuralProphet и чем она отличается от классической библиотеки. Затем я применю на практике обе библиотеки, чтобы увидеть, насколько хорошо они могут выполнять одну и ту же задачу прогнозирования временных рядов. Определенно, вам будет полезно иметь некоторое представление о прогнозировании временных рядов, чтобы понимать всю терминологию. Давайте начнем! Читать далее